Building Blocks of Étale Endomorphisms of Complex Projective Manifolds

نویسنده

  • NOBORU NAKAYAMA
چکیده

Étale endomorphisms of complex projective manifolds are constructed from two building blocks up to isomorphism if the good minimal model conjecture is true. They are the endomorphisms of abelian varieties and the nearly étale rational endomorphisms of weak Calabi-Yau varieties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Automorphisms of Compact Complex Manifolds

We give an algebro-geometric approach towards the dynamics of automorphisms/endomorphisms of projective varieties or compact Kähler manifolds, try to determine the building blocks of automorphisms /endomorphisms, and show the relation between the dynamics of automorphisms/endomorphisms and the geometry of the underlying manifolds.

متن کامل

Hyperbolic Dynamics of Endomorphisms

We present the theory of hyperbolic dynamics of endomorphisms in. Topics covered are hyperbolic sets, stable manifolds, local product structure , shadowing, spectral decomposition and ^-stability. 0. Introduction In this paper we study a smooth mapping f of a manifold M as a dynamical system. We will discuss both semilocal and global dynamical properties of f, but always under some hyperbolicit...

متن کامل

Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...

متن کامل

Polarized Endomorphisms of Complex Normal Varieties

It is shown that a complex normal projective variety has non-positive Kodaira dimension if it admits a non-isomorphic quasi-polarized endomorphism. The geometric structure of the variety is described by methods of equivariant lifting and fibrations. Endomorphisms of the projective spaces are also discussed and some results on invariant subvarieties under the pullback of the endomorphism are obt...

متن کامل

Four-manifolds with Shadow-complexity Zero

We prove that a closed 4-manifold has shadow-complexity zero if and only if it is a kind of 4-dimensional graph manifold, which decomposes into some particular blocks along embedded copies of S2 × S1, plus some complex projective spaces. We deduce a classification of all 4-manifolds with finite fundamental group and shadow-complexity zero.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007